Как повысить КПД электродвигателя: выбираем решение

Как повысить КПД электродвигателя: выбираем решение

В современных электромеханических преобразователях обнаруживаются потери энергии в магнитном, электрическом и механическом режимах, в результате возникают проблемы с выделением тепла, увеличением шума и вибрации. Это связано с низкой эффективностью перемещения элементов, перемагничиванием магнитного поля сердечника якоря электродвигателя или скачком нагрузок. Но возможно ли уменьшить эти «утечки» и таким образом улучшить коэффициент полезного действия, и если да, как это сделать? Эту тему мы рассмотрим в данной публикации.

Современные методы для улучшения КПД асинхронных двигателей

По общепринятой классификации, электрические машины бывают синхронными и асинхронными. Синхронные машины имеют одинаковую частоту вращения ротора и магнитного поля, тогда как магнитное поле асинхронных машин вращается с более высокой скоростью, чем ротор. Асинхронные электродвигатели более популярны и пользуются более широким распространением: около 90% всех электродвигателей на планете являются асинхронными. Они используются во многих отраслях, включая промышленность, сельское хозяйство и сферу ЖКХ. Это происходит потому, что такие механизмы просты в производстве, достаточно надежны, экономичны и не требуют больших затрат на эксплуатацию. Кроме того, КПД асинхронных электродвигателей гораздо выше, чем у синхронных.

Однако эта техника также имеет существенные недостатки. Например, высокий пусковой ток, недостаточный пусковой момент, несогласованность механического момента на валу привода с механической нагрузкой (что может привести к резкому увеличению силы тока и избыточным механическим нагрузкам при запуске и снижению КПД в периоды пониженной нагрузки), а также невозможность точной регулировки скорости работы механизма. Все эти факторы значительно снижают эффективность работы системы.

В настоящее время производители стремятся улучшить КПД асинхронных электродвигателей. Существуют различные методы для достижения этой цели. Использование частотно-управляемых преобразователей позволяет регулировать частоту вращения мотора и величину подаваемого напряжения, что позволяет снизить пусковой ток и улучшить точность регулировки скорости. Кроме того, установка встроенного электронного устройства контроля и регулирования может существенно повысить КПД системы. Новые технологии и материалы также могут улучшить работу электродвигателей.

Возможности контроллеров-оптимизаторов включают в себя повышение КПД различного оборудования, используемого в различных отраслях, включая промышленность, сельское хозяйство и ЖКХ. Устройства этого типа помогают избежать перегрузок кронштейнов при запуске мешалок, а также компенсируют гидроудары в трубопроводах. Более того, контроллеры-оптимизаторы обеспечивают плавный запуск тяжелого и очень тяжелого оборудования, что невозможно сделать без использования подобной техники.

В статье рассказывается о том, как контроллеры-оптимизаторы могут помочь повысить КПД оборудования за более доступную цену, по сравнению с преобразователями. Например, по цене примерно от 90 до 140 тысяч рублей, можно приобрести устройство мощностью 90 кВт от отечественного производителя.

Контроллеры-оптимизаторы – это устройства, которые быстро реагируют на изменение напряжения и снижают расходы электроэнергии на 30-40%. Они также помогают уменьшить воздействие реактивной нагрузки на сеть, повысить КПД привода, а также экономят деньги на конденсаторных компенсирующих устройствах. Применение контроллеров-оптимизаторов также помогает продлить срок службы оборудования и повышает экологичность производства.

Важным преимуществом контроллеров-оптимизаторов является их доступная цена в сравнении с преобразователями частоты. Однако, необходимо учитывать, что контроллеры-оптимизаторы не могут использоваться в случаях, когда требуется изменять скорость вращения электродвигателя.

Таким образом, контроллеры-оптимизаторы оперативно реагирует на изменения напряжения, экономят электроэнергию, уменьшают реактивную нагрузку на сеть и повышают КПД привода. Они также помогают сократить расходы на конденсаторные компенсирующие устройства, продлить срок службы оборудованию и повысить экологичность производства. Незаменимы они только в тех случаях, когда необходимо изменять скорость вращения электродвигателя.

Как правильно выбрать устройство, способное повысить КПД оборудования? Дело в том, что выбор определенного электропривода зависит от того, как он работает. Нужно понимать, что если необходимо изменять скорость привода, то здесь единственно верным выбором будет преобразователь частоты. Но если скорость вращения двигателя не изменяется или это не является целями, то более доступным решением будет использовать контроллеры-оптимизаторы. Такие устройства обойдутся значительно дешевле, чем преобразователи частоты.

Ключевыми факторами, влияющими на КПД электродвигателя, является несколько факторов, включая степень его загрузки относительно номинальной, конструкцию, модель, износ, а также отклонение напряжения в сети от номинального значения. Не стоит забывать, что после перемотки КПД электродвигателя может снизиться. Для более эффективной работы электропривода рекомендуется обеспечивать минимальную загрузку не менее 75%, увеличивать коэффициент мощности, регулировать напряжение и, если возможно, частоту питающего тока. Повышение КПД двигателя может быть достигнуто с помощью специального оборудования, однако не всегда нужно или возможно реализовать все эти меры.

Для улучшения КПД используются различные приборы, в том числе частотные преобразователи, которые изменяют скорость двигателя, изменяя частоту питающего напряжения. Также используются устройства плавного пуска, которые ограничивают скорость нарастания пускового тока и его максимальное значение. В этой статье мы сравним современные решения для повышения КПД двигателей на основе эффективности работы и экономической целесообразности.

Чтобы повысить эффективность работы электродвигателя, можно применять частотные преобразователи для асинхронных двигателей. В результате применения данного устройства происходит трансформация однофазного или трехфазного напряжения с частотой 50 Гц в напряжение, которое имеет необходимую частоту (обычно от 1 Гц до 300–400 Гц, но иногда и до 3000 Гц) и определенную амплитуду.

Одним из главных инструментов управления скоростью электродвигателей в современной промышленности является преобразователь частоты - также известный как «частотник». Принцип работы «частотника» заключается в том, чтобы изменять частоту входного электрического сигнала, поступающего на электродвигатель, что позволяет регулировать скорость вращения вала.

Обычно «частотник»управляет работой электронных ключей, а также контролирует оборудование при помощи электронных цепей. Он включает также схемы, работающие в режиме ключей и открывающие тиристоры или транзисторы. В зависимости от устройства и принципов работы, существуют два класса «частотников».

Первый класс использует непосредственную связь и представляет собой выпрямители. Они обеспечивают низкочастотное напряжение, которое позволяет регулировать скорость вращения привода в определенных пределах. Этот тип устройств не лучшим образом подходит для управления мощным оборудованием, регулирующим множество технологических параметров.

Второй тип устройств использует промежуточное звено постоянного тока. В таких аппаратах производится двойное преобразование энергии, чтобы обеспечить выходное напряжение с необходимой амплитудой и частотой. Это дает возможность применять их для управления электродвигателями с широким диапазоном мощности и скоростью вращения. Однако, несмотря на их многофункциональность, такие преобразователи частоты имеют несколько более низкий КПД, чем выпрямители.

Несмотря на это, устройства второго типа являются наиболее популярными среди «частотников», которые обеспечивают плавное регулирование скорости вращения двигателей с помощью электронной технологии.

Возможности, которые может предоставить частотный преобразователь, во многом зависят от соответствия его функциональных возможностей целям использования. Например, для оснащения электроприводов насосов и вентиляторов используются преобразователи с невысокой перегрузочной способностью и, зачастую, с U/f-управлением. При необходимости такие преобразователи могут повышать начальное значение выходного напряжения, с целью увеличения момента двигателя на низких частотах.

Устройства с векторным управлением являются более совершенными. Они регулируют не только частоту и амплитуду выходного напряжения, но и фазы тока, протекающего через обмотки статора. Такие преобразователи устанавливаются на прокатные станы, конвейеры, подъемное, упаковочное оборудование и так далее.

В случае, если нужно выполнить контролируемое торможение двигателя, используется функция замедления, которую может обеспечить частотный преобразователь. Однако, если требуется интенсивное замедление, может потребоваться использование «частотника», оснащенного встроенными или внешними блоком торможения и тормозным резистором, или рекуперативным блоком торможения. При динамическом торможении двигатель переходит в генераторный режим и трансформирует механическую энергию в электрическую, которая возвращается в звено постоянного тока и либо рассеивается в виде тепла на сопротивлении тормозного резистора, либо возвращает энергию в сеть посредством рекуперации. Такой подход подходит для станкового и конвейерного оборудования.

Частотный преобразователь с обратной связью позволяет поддерживать постоянную скорость вращения при переменной нагрузке с более высокой точностью, чем преобразователь без обратной связи, что повышает качество технологического процесса в замкнутых системах. Подобные устройства широко используются в робототехнике, дерево- и металлообработке, в системах высокоточного позиционирования.

В последние годы цены на частотные преобразователи подвержены высокой волатильности, как отмечают финансисты. За прошедший год-полтора их стоимость значительно выросла. Такой рост цен можно объяснить не только колебаниями валютного курса, но и другими факторами.

В 2021 году стоимость частотных преобразователей мощностью 90 кВт от российских и зарубежных производителей варьировалась в районе от 200 до 700 тысяч рублей, в зависимости от производителя.

В данном случае мы имеем преобразователь частоты, который используется для асинхронного двигателя. Описав его рабочий принцип выше, можно утверждать, что данный прибор способен уменьшить затраты электроэнергии, обеспечить плавный запуск механизма, обеспечить точное регулирование скорости вращения при изменяющейся нагрузке и увеличить пусковой момент. Кроме того, все вышеперечисленное в сумме ведет к увеличению коэффициента полезного действия машины.

Несмотря на эти очевидные преимущества, следует отметить некоторые недостатки такого «частотника». В первую очередь, стоит заметить его достаточно высокую стоимость. Кроме того, в процессе эксплуатации преобразователь может создавать электромагнитные помехи.

Контроллеры-оптимизаторы: устройства для плавного пуска

Для обеспечения плавного запуска, разгона и остановки электродвигателя используются устройства плавного пуска (УПП). Они способны ограничивать скорость увеличения пускового тока в течение определенного времени и тем самым предотвращать повреждение оборудования.

Однако традиционные устройства плавного пуска имеют свой недостаток – они не улучшают КПД оборудования. К тому же они применяются только для управления приводами с невысокой нагрузкой на валу.

Но на сегодняшний день существуют контроллеры-оптимизаторы, которые позволяют повысить энергоэффективность двигателей. Они могут согласовывать крутящий момент с моментом нагрузки и, как следствие, снижать потребление электроэнергии на минимальных нагрузках на 30–40%. Эти устройства предназначены для приводов, не требующих изменения числа оборотов двигателя.

Например, чтобы снизить энергопотребление эскалатора при помощи преобразователя частоты, потребовалось бы уменьшить его скорость, но это невозможно, потому что тогда подъем пассажиров займет больше времени. Однако контроллеры-оптимизаторы позволяют снизить энергопотребление без изменения скорости электропривода в тех случаях, когда он недогружен.

Контроллеры-оптимизаторы представляют собой компоненты, которые контролируют фазы тока и напряжения питания электродвигателя. В результате этого осуществляется полное управление приводом на всех его этапах работы, а также защита его от таких аномалий, как нарушение чередования фаз или пониженного/повышенного напряжения. Это устройство эффективно согласует значение крутящего момента, развиваемого двигателем, и значение механического момента, нагружающего вал привода. Коэффициент мощности повышается, при этом скорость вращения ротора остается прежней. Важно отметить, что контроллеры-оптимизаторы не требуют подключения дополнительных устройств, так как их функциональность является завершенной.

Кроме того, контроллеры-оптимизаторы обладают способностью прекращать брать мощность из питающей сети в те моменты, когда полупроводниковые переходы тиристоров закрыты, то есть не пропускают электрический ток. Открываются тиристоры при поступлении управляющих импульсов. Задержка подачи управляющих импульсов определяется степенью нагрузки привода. При переходе тока через ноль тиристоры закрываются.

Очень важно отметить, что контроллеры-оптимизаторы реагируют на изменение нагрузки настолько оперативно, что скорость реакции составляет лишь сотые доли секунды.

Фото: freepik.com

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *